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~AESTRACT

A parallelism is established between the t eor@tlcal analyses of
energy transport due to conduction and thermal radiation in a unidimen-
sional configuration. The boundary conditions assumed correspond to
two parallel walls of given temperatures separated by a finite slab of
gas. A gray-gas thegry of radiation is employed in which the coeffi-
cients of emission and absorption are independent of frequency; the
theory of conduction is based on the Bhatnagar-Gross-Krook model of

the Boltzmann equation. Under simplifying assumptions, the half-range

\
form of the equations 1s modified through the use of relations drawn
from continuum theory. Heat flux is predicted for all values of optical \/

thickness or inverse Knudsen number. Comparisons with available numer-
ical calculations based on less restrictive assumptions indicate the
fluxes are given with a maximum error of a Tfew percent yet are express-
ible analogously in algebraic form. The correspondence between wall
accommodation and emission coefficients is exhibited. In the concluding
section, generalization to other configurations yields explicit formulas

for heat flux between coaxial cylinders and concentric spheres.
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INTRODUCTION

The theoretical prediction of the rate of transfer of thermal‘
energy through a gaseous medium contained between parallel walls of _
different temperatures and specified physical propertieé.ié a funda-‘ "
mental problem in the study of heat exchange. In the theory of heat
conduction in a monatomic gas one may try to'determinebthe dependence
of energy flux on the two wall tempgratures, their distagce apart, the
mean free path length of the gas particles, and the accommodation
coefficients of the walls. Similarly, in radiative transfer through
an absorbing and emitting grey gas, the energy flux depends again on
the wall temperatures, distance apart, the radiation (or photon) mean
free pafh length, and én the coefficients of emission of the walls.

The present note shows how, under simplifying assumptions, the flux in
both cases can be predicted tp a rather remarkable degree of accuracy ‘i
while at the same time preserving formal siﬁilarities between the |
principal gquations for conduction and thermal radiation.

Insofar as géay-gas radiation‘is concerﬁed, the bgsic equations are
well defined; the main contribution here is the demonstration of an-
effective use of the assumption of sma;l mean free path length in the
hﬁlf-range form of the equations. Predictions of flux are then shown '
to possess reasonable merit f?r all optical thiéknesses even though a %
portion‘of the analysis is limited to siﬁplificatiog inherent in the _‘ ﬁ;
continuum or Rosseiand regime . ;

. The exact description of heét conduction for a gaé,with arbitrary
mean frée path length relieé on some formulation of the Boltzmann equa- %E%
tion. The analogy to be devglcpgd results from the use of the B-G-K

L]
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model (Bhatnagar, Gross, and Krookl} and half-range reprgsentations of
the distribution function are employed. Once the similarity between the
two problems is established one is led nsturally to the consideration of
proper use of the continuum form of the conduction equations. The
stratagem used in the rediation analysis, that is, proper employment
of continuum theory, indicates the procedure and comparisons with more
accurate calculations show that the predictions remain good for rarefied -
gases, that is, in the Knudsen regime of larée‘meaq free path length. .
It is important to stress that the cloée analogy achieved here holds
pr;ncipally ﬁhen attention is concentrated on flux. Temperature distri-
butions, for example, are not the same in the two Problems. Also, the .
distributions‘predicted by the approximéte analysis are in both cases
increasingly inaccurate as the walls are approached. It appears thﬁt
flux is the grossest of the physical quantities of interest and is
insensitive to approximationsf More localized phenomena, such as tem-
perature "slip" at the walls, react much ﬁore sharply to imposed
gpproximations. Qﬁalitﬁtively, however, the predictions provide the_  :

Proper trends and extensions of the method become apparent.

. NOMENCLATURE
a constant introduced in.B-G-K model (Eq;'(16))
f  aistribution function | L
F ' Maxwellian distribution (Eq. (17))
L heat flux (Eqs. (5) and (29))
' specific intensity of radiation (Eq. (1))

3 particle flux (Eq. (18b))
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Boltzmann constant

heat conduction coefficient |

distance between plates | p
particle mass | |

particle number density

xx component of pressure tensor
temperature

particle velocity

x component of particle velocity
coordinate measured normal to wall
emission function (Egs. (2) and (30))
wall emission or accommodation coeffic_ient
angle relative to x axis

particle or photon mean free path -

cos 6

JF (ax/N)

SE (ax/n)

Sﬁefa.n-Boltzma.nn constant

. | Subseripts
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u
©

value in gas at x

value in gas at x

[}
£
-
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"
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e

Maxwellian value .
Knudsen value
value at left wall

value at right wall
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Superscripts
+ half-range value, O < i < 1 for radiation, O < vy for conduction
- half-range value, -1 < 1 < 0 for radiation, vy < O for conduction
ANALYSIS

Assume, as in Fig. 1, two wells with temperatures T, and T, at
a distance apart L. In this schemat.ic repreéenta.tion of the problem,
conduction and radiation cé.n be indicated simultaneously and, since alge-
braic similarity is to be featured, the same symbols will be used in the
two cé.ses. Thus, the parameters €; and €, represent either the wall
accommodation coefficients of heat conduction or the wail emission
coefficients for radiation. The gaseous medium between the walls has
for photon or pa.rtiéle mean free path the local value A. We assume

also that the walls emit and reflect the incident energy diffusely.

Radiative Transport.
}

Consigder, fixl'st, the transport of thermal x"adia.tion between the
walls. Distance x 1is measured normal to and from the left wall.
Introduce now the specific intensity function which denotes the energy :
transmitted through a unit aree (normal to the axis) in a unit time
and in a unit solid angle that is. inclined at an angle 6 +to the
positive x direction. We distinguish the half-ranges (-7/2 < 6 < /2,

-#/2 < % - 8 < n/2) of the specific intensity by the notation

I(u,6) , O<wm

A

1; I'(u;&)' y -lgu<o (1)
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where L = cos 6 and d¢ = dx/A(x). The basic transfer equations are

(see, e. g., Kourganoff2, p. 25 et seq.)‘
w(ar'/ag) = -r*(i,e) + [B(8)/x] (2).

The function PB(E)/n 1is the so-cailed source (or emiss:ion) function.
In the absence of scattering and under the assumption that the index of
refraction of the gas is unity, the condition of local thermodynamic
eqﬁilibrium yields the relation B(t&) = oT4(t) where o 18 the Stefan-
Boltzmann constant.

Approximation in the method of solution is introduced at this
point. First, one notes that,‘ the source function as well as the
boundary conditions, developed later, are iridependent of 4 when the B
walls emit and reflect diffusely. As a conseqﬁence » the dependence of - |
I"t(u sE) on. i 1s suppressed by means of an appropriate averaging. One
rational way in which this averaging can be achieved iﬁvqlves taking
first moments with respect to 4 in the’ ha]f-ranges. ' It suffices here )
however, to assume’ some such 6pefation has been carried out a.nd' to- |

rewrite Eqs. (2) in the form.
s(arfar) - T + [8(8)/x] (3)

where the average value I 1is yet to be determined.
The quantities h*(%) and h~(&) are now introduced to denote the -
balf -range energy fluxes associlated with the mpt‘ion of phofone in the

positive and negative x (or ¢) directions, respectively. Then

n
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hH(g) = 2n [T uI*au = Aa*(s) (4a)
h(¢) = ex SO ur” an = -ax=(e) ' (4b)

Total flux, so defined that it is positive when the net flow of energy

in the x direction is positive, is h( &) where
() = h¥(&) + h(¢) (5)

From Eqs. (3) and (4) one derives the relstions

A(an*/ae) = (&) - n*(e) (6a)

u(dn-/dat) = p(&) +hn7(E) (6b)

Addition and subtraction of Eqs. (6) together with the definition

introduced in Eq. (5) yields .
a(an/ae) = 2p(e) - [n*(e) = n7(E)] (Ta)
' ala(n* - n7)/agl = -n(E) | (7).

For the problem being considered, conservation_of energy requires that

,. flux be a constant. From Eq. (7a), therefore,
Me) = [mf(e) - w02 ®

and the fundamental equations‘aré
an(t)/ag =0  o (%)

~ap(e)/ag = -n(g)/20 (9v)

’:
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Equation (9a) %s indepen‘dentv of the appz"oxima.tion we 'have employed' "
and the arbitrariness in the choice of | appears only in the second
relation. The decision as to 4wha;c value to assign to @ 1is now
resolved by insisting that Eq. (9b) must agree with the expression for

flux in the limiting regime of an omiéalg thick medium. This final
assumption fixes the value 2l = 4/3 since independent study (e.g-,

Kourganoff?2) of radiative transfer for A << L leads to the condition .
dp/at = -3b/4 at any point &  sufficiently distant from an imposed
wall or boundary condition. Since the approximate analysis is based
on the use of isotropic specific intensify ’ that is, no dependence of
I't(u,g) on p, we retain a certain logical consistency by adjusting the
arbitrary constant to conform with a régime in which the isotropic con-
dition does apply. Very accurate 'nunxeric;a;l solutions are available For
special ve?.lues of the physical parameters, and an & posteriori check of
the r;sulfs for these cases will be given later. | |
The boundary conditions express the équality of outwardly directed
flux at each wall ‘to the sum of the wall emiésion and the reflected |
portion of the inwardly directed flux at the wa.ll Since the reflec-
- tivity coefficient of an opague wall is 1 minus the absorption (or

emission) coefficient, one has

hyt

-hp" = ezaw2!+ (1 -‘62)ﬁ2+ : (10b)

Glel - (l - €1)hi; | . (108;)’
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Here, subscripts 1 and 2 refer to conditions in the medium at x = O
and x = L, and subscripts wl and w2 refer to wall conditions at the

saeme positions. Combination of these relations leads to

, ' F . i
1,1 _1)=p. - hpt - ha” Myt - hy”
h (el + EZ 1 &'l BWZ + 2 2 . (ll)

Equation (11) retains half-range fluxes but from Eq. (8) it can be .

vritten alternatively as -
n(L+l-1)=p8, -8, +82-0 (12)
€1 €2 W1 2 2 1 .

The integration of Egs. (9) subject to the boundary ,conditions is |
now & straightforward process. The constant value of flux, h, is inde-
pendent of £ and a function only of the parameters Ty,, Tys, €1, €2/
and the optical thickness &; where §&j = J; A “(x)ax. WVhen
€ =€ =1, & =0, flux 15 oT,,* - oT_,* and is the heat flux asso-

ciated with black wall conditions, The end results may be written in-

the form ’ _ ‘
B(E) =h[b - 3(& - lg)] | ' (13)
n 2 °L/| ,
vhere - . ,
' «(1 1,3
Tt (-5t g ) e (E;‘ﬁ*gﬁL)% .
b = S : ()
°Tw1 - UTWa : N
and
oT,,* - or,.t | |
h = — wi 2 A ) (15)
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Equation (13) gives a liﬁear expression for the emission function
and repfesents a rough approximation to the actual distribution of
oT*(¢). Equation (15) is thev principal objective of the analysis. TIts .
accuracy, when comgéred withravai;able and m§re exact numerical calcu-lg
lations, is surprisingly good. Figure 2 shows h/(oTw14 - oTw24) es &
function of &7 and € for the caée of physically similar walls '

(€1 = €5). Solid lines correspond to the predictions of Eq. (15). The
dashed lines were taken from‘the work of Heaslet and‘Fullers where an
iterative method was used to solve thé basic integral equation of
rediation theory for the same boundary conditions. Probstein* has
previously noted that for black walls (€1 = € = 1) the agreement with
an exact numerical analysis carried out by Usiskin and Sparrows is

quite satisfactory. The topmost curve is Probstein's result.
Conductive Transport

Heat conduction between the walls'ana through & monatomic g&s " '"
remains to be condidered. If Egqs. (8), (9),an§‘the boundary conditions
(10) ére accepted as fundamental to the prediction of heat flux,lé
- parallel development 1s possible.l Preliminary to this, the specific
forms of the kinetie eqpa;ions need to be infroduced.

" The B-G-K* idealization of the Boltzmann equation for the present
problem can be expressed as
| ve(ag/ax) = (aF/N)(F - £) | (16)
vwhere ' .

F = n(n/2m&T)*/2 exp(-mv?/2KkT) (17)
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(For a valuable critique of this idealization see Liepmann, Narasimha,
and Chahine.®) The quantity : vy 1is the x component of particle
velocity v, and v 1s the average particle velocity for the Maxwellian
distribution, F. The q_ua.ntity A s rélated’to the pa.r'ﬁicle mean free:
path length, also based on F, and a 1is a proportionality constant
to be determined by requiring the solufion fﬁr,heé.t flux to be exact
’ at the continuum limit. Thus A and a may be functions of n and T
for arbitrary intermolecular force laws .

The values of n,T a:nd other quantities of interest are given in

terms of moments of the distribution function f by the relations

n = ff av  (number density) ' (l8a) '
J= _fvxf & (flux of pgrticles) ‘ (18b)
Pry = Jrv 2f av (xx component of pressuré ‘
= f x tensor) (18c)
(3/2)nkT = f (1/2)mvas av  (internal energy density) (184d)
i ' .
n = f(1/2)mvy3 &  (total energy flux) (18e)

. Upon multiplication of Eq. (16) by the appropriate collisional inver-
iant (1, mv,, or mv3) and integration over particle velocities, we
get the conservation equations j/dx = 0, Jp,,/dx = 0, db/dx = 0.

Noting that J§ 1s zero at the walls, these can be written

J=0 (19a)
Pyx = const = force per unit area on walls (19v)
h =

const , - | , (_19c-)
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The kinetic theory couﬁterpa.rt of the forégoing simplified treat-
ment of radiative transport entails the defiﬁition of two half-range
distribution functions fi ‘ for particles with "positive or negative
values of vy, and the two distributions are taken to be Maxwellian,
that 1is, | | \ |
P

£t = ont(m/2T®)? 2 exp(-mve/okT) . - (20)

Substitution of this into Eqs. (18a) to (18d) yields

n=nt+n . C (am)
3y = n‘+.(2kT+/1tm")l’2- n7(2kT"/mm)3/2 = 6 }(21‘0):
Pex = gﬁ{T"' -i;n'kT' = const (21c) j
| DKT = n"+kT+‘ + 0 KT” = ﬁxx : (212)

6
The equalities on the right follow from the use of the conservation
relations (19a), (19b) and from combination of (2lc) with (21d).

The following simplified treatment of the kinetic theory heat
conduction problem can be cast in a fom that is independent of the
intermolecular force law. To that end, we choose a definition of A | ‘
ba.sed on the heat conduct-ion coeff‘icient and the hard sphere mean free "
path, hgg = W2 7dn)~2 where 4 is particle dlameter. For hard

spheres, the heat conduction coefficient is
Kgg = 1.02513 (75/64a2)(x%T/xm)2/2

see Chapman a.nd‘ Cowling,? chaptex" 10. Alternatively, an approximate

evaluation' oiA‘b the numerical coefficient taken from Jeans® leads to

i
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Kgg = (15/%1a2) (kT /) /2

The difference between thc; two expressions is less than 1 percent, and
we shall adopt the latter bega.use of its moré‘compa.ct_ form. In a

later development the pa.ra.mete;ri a appearing in Eq. (16) will be N
evaluated by consideration of the form of thé e(iﬁ;.t;[;)_n—;_i;- Vi';hevvcrcvm:b;l.rrrmum '
limit corresponding to vanishingly small mean free path. It can be

seen that this procedure is independent of the form of the intermolecular

force law if an effective meen free path is defined as
N = (K/Kgs)Mus = K/(15/4)kn(2kT/xm) >/ 2 (22)

vhere K 1is the continﬁum heat-conduction coefficlent . If momentum
transport were considered, a separate effective mean free path would
have to be defined for that case, but in the present conduction problem‘
this is not necessary.

It is of interest to compsre our effective mean free path for
conduétion sy Eq. (,22) » with values that have been used in the literature.

For Maxwellian molecules, the heat-conduction coefficient 1s7
Ky = [5/4nA2(5)1(2/mk)2/2 k2T
L

where Ap(5) = 0.436 and ® is the constant in the inverse fifth power.
force law. In the study of heat flow by Zieringl® the solution for
Maxwellian -molecules is expressed in terms of a mean free path My

defined by Maxwell as

Ny = 1/[22A5(5)(r/kT) /2 n]
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The heat-conduction coefficient can be expressed in terms of this pa.fa.meter .

as

Ky = (5kn/2) (2kT/m)>/2 M
By substitution in Eq. (22), we find-
A= (2~[; /3)KM‘ (for Maxwellian molecules)

When expressed in terms of A, our results are indepe.ndent of the
form of the intermoleculsr force law. Hovever, for comparison with
experiment or ,oth;ér results in the litleratvure this f.a.ctor 'must be .con-_,._
sidered. For éxa.mple » Lavin and Haviland!?l define Knudsen numbers for

hard spheres and Maxwellian molecules in terms of an average density
6 = (m/L) fL n dr" S (23)“
fo}

It is ai:parent that p 1s a'measure of the amount of gas between the v

walls, which can be inferred from experimentally measurable quantitie's;

The solution to be(given later 1is expressed in terms of the variable § s
1o . -

which 1is related to x and A by

£ = S axa/Mx) o (2ke)
or | o |

at = d;/x_ " (ekb}

Rearrangement and substitution of Eqs. (22) and (2lb) into Eq. (23) .

yields

- _ b m gt _Kat o | o
brmn kb (ax1/xm) T2 ( 5?
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. The solution to be given latér leads to a temperature distribution T(&).

When the heat-conduction coefficient K 1is specified as a function of
T, the average density can bé evaluated according to Eq. (25).

Through use of Eq. (24b), Eq. (16) 5ecgmes , m;
vy(ag/ae) = a¥(F - £) (26) .

vhich we choose to rewrite in terms of half -range functions (vx >0,

vy < 0) as
(v /av)(art/at) = £5(v,8) + F(v,t) (27)
The half-range energy fluxes are, respectively,

- n¥(g) = 2n"kT (kT /am) M2 (282)

n-(¢&)  §2n'kT‘(2ka/um)1’2 (28b)

and total flux h(&) is

i

n(g). = b*(&) +n7(E) . (29)'4.

Conformity between the present analysis end the approximate theory used

with an sppropriate averaging in velocity space. Thﬁs, if Eq. (27)
is multiplied by mvxv2/2 and integrations carried out over the half-

range particle velocities,
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(vy/a¥)(an"/ag) = p(e) - n*(¢) " (30a)

(vfar)(dn~/ag) = B(&) +n-(€) (300)

where B(&) = nkT(2kT/tm) 1/2 014 the coefficients in the left members
of the differential equations are yet to be 'fixed. The direct analogy

with Egs. (6) is obvious and, as in Eqgs. (7), combination of the flux

equations ylelds

" (vy/a¥)(an/at) = 28(¢) - ['(&) - b (E)] (31a).
(vo/ev)[a(n* - n7)/at] = -n(¢) - (3w)

As noted in Eq. (19c), total flux is constant, so

B(e) = [n7(8) - n(8)]1/2 (32)

i

and the fundamental equa:tfions become

an(t)/ag = o | | (33)

ap(t)/a = -n(t)/2(vy/a¥) (34)
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Precision in the statement of the latter relation now'appea.rs ir,
as previously, one expresses it in conformity with the dictates of
continuum theory and small mean free path length. With the aid of

Eqs. (21c) and (21d) B can be expressed ds'v

B(&) = nkT(2KT/xm)*/? = p_ (2kThm)L/2

(35)
where p,, 1s constant. Differentistion and rearrangement leads to

dp/at = (nk/2)(2kT/nm)*/2 (aT/dt)

The quantity 4dT/d€ can be eliminated in favor of h by use of the .
continuum relation h = -K(dT/dx). By substitution of Eq. (22) to

remove K, and use of Eq. (24b), we get

h = -(15/b)nk(2kT/tm)*/ 2 (ar/at)

_' .
Combination of this with the expression for -df/d¢ above yields

. ap(e)/at = -2n/15 | (36)
where B(&) is given explicitly in Eq. (35). in the approximste analysis,

T™(t) is a linear function for radiative transport and T1/2(t) is a

linear function for conductive transport .

o
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It remains to introduce the boundary conditions. More detailed
consideration is required than was used earlier in Eqs. (10). We write

these conditions as

fl+(Vx)V) = €Fy, ;'(l - el)fl-('vx)Q) P) vy >0 (37a)

fa-(Vx,V) €aFys + (1 - eg)f2+(-vx,v) ) vx <0 (370)

+ .
Here, flt and £ are the half-range distribution functions in the gas
evaluated, respectively, at the wall positions. The distribution func-

tions associated with diffuse emission at the.walls are. . ...

! _ Fy, = A;(m/earkmm)S/a exp( -mv2/2KkT,,, ) i(38a)
Fyo = Ao(m/2nkTyz) %2 exp(-mv2/2kT,,) (38b)

where T, and Ty, are the two wall temperatures. The values of A;
and Ap are yet to be determined; the parameters €; and €5 are the
wall accommodation coefficients.

The counterpdrts of Egs. (10) are '

=2
=
1

= €1kA1 Ty, (2kTy, /m)2/2 - (1 - ex)hna” ~ (39a)

B
N
!

€kAZT,(2KTy hm)2/2 + (1 - ea)ha’ (39v)
Through the use of Eq. (32), one has
i/ i L
1 .1 - 3 3/z 3/2 - s
h (—GT ta > = (i—%—) (AITV]. = ATy, ) + B2 - B (ko)
The solution of the differential Eq. (36) is expressible as

B(e) = hlb - (2/15)(¢ - &i/2)] (W)

¢
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From the boundary conditions ome gets

. . :
AT, 2 (2 L+—-Ii + a1, 22 i---]:-+-%'->}
[ lTWJ. <62 15 24+W2 €1 ) 1 |
b= 3/2 ' | (ha)
(AlTwl = Aszgala)

1/2
<2km> (1 ‘ AgT, 3/2>
2§
1,1 =L
(+1 1)+ L

The final relaetion gives flux in terms of the wall emission charac-

(43)

teristics but a difference exists here between conduction and radiation.
In the latter case the emission from the walls is purely a functioﬁ of
wall temperature. One distinguishing difference is associated with the
fact that photons need not bg cénserved in gbsorption and emission at '
the walls. Thus, a more detailed balancing of conditions is necessary |
for the gas pa.r‘bicles 9 a.nd the para.meters A; and Ay are constra.ined
by known relations. The addltional calculations are most easily ca.rried
out if a perturbation analysis is used in which the percentage change
in temperature is not excessive. To this end we introduce;: |
o = (T, - Twz)/a and assume 2AT/[(1/?_)(Twl + Twz)] <1

From Bgs . (21a) and (21b) |

T

n(e)[T" (5)1“2/{[T+<g 11/2 . T (ml’Z} )

[}

n+(§)
()

2~(8) n(sm’*(e)ll'Z/itT";“u)J}'Z - L2 (8)17/2}

‘a.nd from Eq | (éld)

T(e) = [TH(E)T(8) 1272

[4)
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Temperature is therefore equal to the geométric mean of the half-range‘
temperatures. If the deviations in the temperatures are sméll enough :
that the geometric and arithmetic means can, to a first order, be

equated, one has 2T(§) zl[Tf(E)T"(g)]lla + [T7(e) + 17(¢)]/2 and
2l7(8)12/2 = [T7(8)1%/2 + [17(8)1M2 (k5)

Multiplication by vy and integration of Egs. (37a) amd (37b) over

the half-range velocity spaces leads to

A (T,,) Y2 = en*(0) [T¥(0)]*'2
- = 20(0)T(0)/{[TH(0)1%/2 + [17(0)1*/2} m n(0)[1(0)]1*/2
' | (h6a)
Ao(Typ) ™ ® = 208 [TH(6;)1Y2 | |
= 2n(&)T(tp) /4, [T+( )12 4 [T (.e,L>11/2} = n(&p,) [1( gL)J”2
(h6b)
Equation (43) is then rewritten as
L oa\/2 -
(%), {n(0)[2(0)1*"® Ty, -~ n(Er)[T(er) 1 ® 1y}

‘ (7).
<}l.+-$L.- %> + 280 :
€1 ‘ € 15

Further reduction is posSible through use of the relations
Py = ¥0(0)7(0) = kn(EL)T(&;) = const
Dol 2HT(8) fum] M2 = pe [2kD(t1/2) fem]>/2 = (20/15)(k - t1/2)

the latter expression being merely a re-expression of Eqs. (41) and

(35). ~Equation'(h7) then becomes
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/2 : .
D‘( ﬂl> Ty :
<1 1 ) 2§L [ <§2>]1/2 th (mn)l/ 2
— + —— o———
€1 €2 : 15pyey  \2K

h =

Twz- ) . ‘ (,4'8) '

B i/2 i/2
HOI-— 6
2 15, \oK

It is convenient at this point to introduce the Knudsen flux, '
hyys which applies at €3 = €z = 1, & = 0. Under these conditions

THE) = T,,, T7(&) = Ty and direct calculation yields

e @ e
h (49a)
T, ) -
or, using Eq. (15),
: 1/2 '
=2 ‘ 2k ] L
thN Pyx ["m(Tw1Tw2)l/2 AT ( 9b)

To ‘the order of accuracy of the preseht analysis these results are
indistinguishable but we shall use the first in view of its more |
straightforward derivatidn.

'Algebraic manipulation of Eq. (48) now leads to the result | f
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1 1 2§L
e te s,
2NT(gr/2) .
- 2hEy [ 2 NT(EL/2) ] [Tw1 + Twz]'
- Lohyy ((Ty,) 272 + (Ty,)2/2 2(£r/2) (50)

2 . . . A B g . e o 4 T
1 -Gh§L> [(rwg“? +<Twa)1’2]3{ a(em)>/ f
SR 2 V(g /2) (Tgy) 2 4 (T )20
Two formulas of interest follow from this relation. First, we note

that since .jT(g) is & linear function the bracketed terms are,

respectively,

(Tyy) /2 + (T,0)2/2 2(Tyy + Tye)

J0) + v(ep) | [NT0) +VT(g))?

When €; = €5 = e it may be conjectured that.the ratios of the averaged.
wall temperatures and the averaged gas temperatures at the wall are

. nearly 1. In this case, one gets
v th

n (2 2§L> . -~ 2 Tohew
S (=2-1+ (51)
hyy <€ <§Lh> { o(am)/2 }‘

2By, (Twa) 22 + (D) 22

Second, more rigorously, we can restrict the analysis to a first-order.

theory involving the small parsmeter 2AT/(T., + Typ)+ Equation (50)

then reduces to

h = B . (52)
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This latter expression is precisely analogous to radiation flux given‘fgw /

in Eq. (15). The role of hyy, vhich is h evaluated at €1 = €2 = 1,

§ =0 is the same as that of black body flux oT,* - oT,.% the '/

2
difference in the coefficients of £ is attributable to the coeffi-

cients appearing in the continuum forms of the transport equations.
Figure 3 shows a comparison between this result and detailed calcula-
tions of Gross and Ziering® for €3 = €5 = 1. The degree of excel-
lence is not as good as that shown in Fig. 2 and, in view of the added-
simplifications used to achieve this expression, the difference is notv
surprising. Iﬁ rarticular, the starting slope of the approximate |
curve fails to conform with the more.nearly exact calculations. The
usefulness of the result in predicting the magnitude of flux is,
however, apparent.

Figure U shows & comparison between predictiohs of slip temperature

Tg. By definition, when €; = €5 = €,

Te/AT = 1 + [T(Er) - T'("oil/zmr | v. (53)

!

and in the present approximate theory one has

Ts . <%> (54)

The comparisons were made to correspond to the results of Gross and

Ziering,® and necessarily were applied at € = 1.
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CONCLUDING REMARKS

The preceding analysis has shown that heat flux may be calculated.
approximately through a simplified analysis in which differential eqﬁa—
tions from continuum theory'are solved subject to boundary conditions
involving temperature discontinuities at the wallé. It is also possible
to characterize the final results in anothef way. To this end we limit
atténtion to fixed values of mean free path . A. Then one notes that the .

predicted heat flux has the form

h . L (53)

he i:eal:: 1,)\;-00 A+ g

A

where A and B are associated, respectively, with the extreme conditions
A>>1 and AK1l. If thié restatement of the end result is given a.
definitive status; generalizations to otﬁer'cases become possible so long
as A ‘15 provided by a free-molecule or optically-thin analysis and B
can be calculated from continuum theory. The asymptotie behavior of
Eq. (53) is corrett for 1/A large and the magnitude of h is exact at
1/A = 0. The oandimensionél analysis and Figs. 2 and 3 indicate that.
the region of leasf accuracy will appéar at moderately.gmﬁll values of
mean free path length wh;re distance is, of course, measured in terms of
a charascteristic geometric length. | |

Two additional results follow 1mmed1até1y. Consider, first, two .

coaxial cylinders with radii R1, R: (R1 < Rp), temperatures Twy? Twas

and accommodation coefficients or emissivities e;, €z If h3 1is heat

flux at the inner cylindér one has

o0
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o <?w1 - Tys > ‘ . ' :
RADIATION hy = —— ‘ (5ka)
L Rl _ )@z& m B2
€1 ‘Ra €.2 N .Bl
v KN , :
CONDUCTION hy = - (5)

.L+B_L<_1-_- >+_1.LB.J. lnBZ
€1 BRs \ez 15 A Ry

In Eq. (54a) the value at A = o 18 provided by Christiansen's formula

as discussed, for exsmple, by Jakob,12 page 5, or by Jensen.® A deriva-

tion of the corresponding term in Eq. (5hb).can be found, for example,

in Kennard.™ The logarithmi¢ terms arise from the fact that the con- -

tinuum equations in c¢ylindrical geometry require flux h to vary inversely

with radius.‘ | |
Consider, next, two concentric spheres wi%h radii Ry, R and, again,

let h; be heat flux at the inner surface. Equation (53) then yields

) ' % 4 . )
(o)
RADIATION hy = (55a)
, ( ) +3Rafe - Ra 4
’ G]_ €2 ’-I- R
" CONDUCTION hy = hm (55b)
2_: Rl _1._ - l> }-I- RJ, 2 = Ri o
€1 R22 I5R A

Christiesnsen's formula again provides the appropriate relation.in
Eq. (55a). TFor spherical geomet#y the cont inuum theory iequirés h to
vary inversely as radius squared.

It is to be noted that when Ry - R1 =L and Ry increases
indefinitely the above results reduce to the formulas derived previously

for the case of parallel walls. When €3 = €5 = 1, Eq. (54b) reduces to .

&
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a form derived by Lées and Liu.*S

A further specialization of interest
also follows from Egs. (55),.namely, the case of a single sphere con-
ducting or radiating to an infinite gaseous medium. Here the extefnal‘
radius Ry becomes arbitrarily large while: Rl is held fixed. A finite,
nonzero value of flux is predicted. In the ideﬁlized case of the cylin-.
drical geometry or in the purely one-dimensional configurstion the theory
predicts zero flux for finite values of Ty, and Ty, Wwhen the distance
between the walls becomes infinite. This anomalous behavior stems from
the change in the steady-state continuum equations as the dimensionalify
of the configuration changes. The differences between the single sphere
and the other cases are closely analogous mathematically to contrasting
results that arise in attempting to predict the drag of the same geometric
shapes in a Stokes flow analysis. The latter analysis, however, is based
on additional idealizations of the basic physical equatiocns. |

In & direct derivation of Egs. (54) and (55) by the methods of this:
peper, the recasting of the differential operators in the governing
equations offers rno difficulty. The boundary conditions require more
detailed investigation, however, and the initial study of the finite slab
shows that the kinetic theory analysis is thefmore difficult to carry'i
through and should be limited to small temperature‘differences. The
approach adopted here is essentially one of-demanding that the boundary
conditions must be exact for limiting values of A. Equation (53) is
thus an inﬁerpolation formule wiéh‘known en&_conditions; Further imbrove-
ment would involve increased accﬁracy in the prediction of the gradient

ah/an"t at A"t =o.
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The attainment of an acceptable analogy without gréat loss in
accuracy of predictions has 5een‘the theme of this paper and was the
motivation for the investigétioq. It is important, also, to stress that
the first-order predictions,bf temperature distribution are bf con-
siderable value as starting points for more exact iterative calculations.
It is not possible to maintain a continuing anslogy, since differences
sppear in the character éf the influence functions in the integral-
equation formulatigns, for exampie, but this does not detract from the
utility of the first-order results. Two recent investigations may be
mgntioned in which predictioﬁs from a continuum-oriented theory are used
to calculate more exact results. The first of these is the work of
Heaslet and FUller;s radiaﬁive trénsport and temperature distribUtions
between parallel plates are determined iteratively, starting with the
approximation of the emissionvfunction given in Eq. (13). In the work of
Liepmann, Narssimha, and Chahine6 the structure of a plane shock layer
is studied by means of the B-G-K model.‘ Success in carrying out an
iterative calculation was attributed in part to the use of the Navief-v
Stokes equations to get a starting soiution. This approach is consistent |
with the type of approximatiqn we: have advocated‘here.- e e et

The methods used in “the derivation of thé-present approximate
sqlutions can be generalized in other directions. For example,:iﬁ may
be possible, by slight modifications, to include complicating factors
such as simultaneous transport bj radiation and conduction in gas mixtﬁres

including polyatomic molecules.
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FIGURE LEGENDS

Fig. 1.- Sketch showing pa;.rallel walls separated by gaseous medium.

Fig. 2.- Dimensionless radiative flux between similar walls as a function

of wall emissivity and optical thickness.

Fig. 3.- Dimensionless conductive flux as a function of inverse Knudsen

nurber, €; = €, = 1.

Fig. 4.- Dimensionless temperature slip as a function of inverse Knudsen

number, €; = € = 1.
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